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Abstract

In the past 30 years, the notion of landscape has emerged in ecology as a result of both
theoretical considerations and practical aspects of land use and land cover. This has generated
a variety of numerical models addressing both methodological and thematic objectives. Scien-
tists model landscapes for at least two reasons: to better understand the landscape dynamics
themselves (called intrinsic needs) and to offer a realistic frame to support other ecologi-
cal processes (extrinsic needs). This paper mainly concerns the intrinsic needs; it reviews
and discusses the way the socioeconomic and/or ecological mechanisms of various landscapes
have been explored through modelling approaches in the past. Our objective is to identify
the possible lack of understanding in landscape dynamics and to propose a unified view of
this complex object. We outline the links between the concepts of landscape and of models
using a double-entry matrix, focusing on one hand on the four main terrestrial landscapes
(agricultural, forested, arid and urban) and on the other hand on the main landscape model
characteristics (explicit or neutral, patchy or continuous, and multi- or mono-scale).

The patterns and processes of each of the four landscape types, in particular, are ana-
lysed within a coherent framework. The heterogeneity of this yet coherent analytical matrix
implies the need for unifying concepts and formalisms. The complexity theory and related
concepts such as self-organization or formal grammar applied to landscape mosaics could
help to further develop the mathematical formalisms necessary to assemble the various inner
landscape processes. The discipline can now offer a theoretical dimension to dynamic landscape
modelling aiming at understanding the mechanism unity underlying this complex object.
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1 Introduction

Ecosystems are continuously changing in a way that is difficult to understand and to predict.
Studies of climate changes (IPCC, 2007), land-use changes, biodiversity erosion (MEA, 2005), and
energy management (Dalgaard et al., 2006) would strongly benefit from models aiming at better
handling landscape dynamics observed on continents (and in oceans). By landscape dynamics, we
imply all kinds of land-cover changes occurring at mesoscale (tens of hectares or km2) on Earth.
By models, we imply numerical (algorithm-based) and analytical (equation-based) approaches able
to handle landscape elements and their dynamics. More precisely, a landscape is usually referred
to as an object assembling elements of various natures (fields, forests, buildings, hedges, roads. . . )
in interaction, simultaneously changing through many spatial and temporal scales (Forman and
Godron, 1986; Turner and Gardner, 1991).

Scientists model landscapes for at least two reasons: to better understand landscape dynamics
themselves (hereafter called intrinsic needs), and to offer realistic frames to host other ecological,
biological, sociological and/or physical processes (extrinsic needs) (Rounsevell et al., 2012). The
role and status of models and modelling is itself an instantiation of a wider debate concerning
representation and explanation (Clifford, 2007). For example, we may model urbanization and
agriculture because they are two of the most important drivers of rapid changes in biodiversity
worldwide (Benton et al., 2002; Cincotta et al., 2000). One of the advantages of studying landscapes
as dynamic land covers is that models of this nature are not bound to some specific processes such
as sectors of the economy or of biogeochemical behaviours. It helps to characterize the processes
involved. Conversely, it is dangerous to infer landscape functioning on the sole basis of its observed
structure (Schröder and Seppelt, 2006; Shochat et al., 2006), as the pattern-process debate reminds
it to us. This paper concerns intrinsic needs mainly, and reviews terrestrial landscape models (LM)
from socio-ecological as well as methodological perspectives (Collins et al., 2011).

Comprehensive studies state that agricultural landscapes today cover approximately 39 – 50%
of continental areas (and are increasing), that forested landscapes still cover 30% of them and
are rapidly disappearing, that urban areas (3 – 5%) and arid or semi-arid (15 – 25%) areas are
continuously growing, too (Paudel and Yuan, 2012; Vitousek et al., 1997). Numerous LM reviews
may be found in the literature (Baker, 1989; Berling-Wolff and Wu, 2004; Scheller and Mladenoff,
2007; Verburg et al., 2004), but each of them is focusing on one of the four main landscape types
mentioned above. Yet, these landscape types are in deep interaction on continents (Lambin, 1997;
Verburg and Veldkamp, 2004). Furthermore, it is to be expected that models used for one landscape
type may be useful (or at least may feed concepts) for any of the other types. Can we identify
common processes behind such landscape similarities and interactions?

In this discussion paper, we address the question whether it is useful and feasible to build a
comprehensive theory of landscape dynamics; and in case of a positive answer, which concepts are
today relevant for this program. Hence, our objective is to show the probable unity behind the
landscape diversity and to advocate the urgent need of a comprehensive theory to handle this unity.
We aim at offering a critical state-of-the-art by the use of a double-entry analysis grid (matrix),
focusing on the one hand on the four main terrestrial landscape types and, on the other hand, on the
most relevant LM characteristics we identified. About the latter, we discuss in particular explicit
or neutral models (Gardner et al., 1987; With and King, 1997), patchy or grid-based (Costanza
and Voinov, 2004; Kotliar and Wiens, 1990), multi- or mono-scale models (Pascual and Guichard,
2005; Thomas et al., 2008) and landscapes with or without linear networks (Proulx et al., 2005;
Pumain, 2006). We outline each case of this analysis grid by a list of associated processes and
one or two examples described in more details, often taken from anthropogenic (i.e., man-made)
landscapes. We then explore on the basis of this analytical grid which model characteristics would
be useful for which landscape type. We did not intend to exhaustively compare papers dedicated
to landscape modelling. We rather focused on theoretical and applied literature contributing to
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this first proposal of a unified landscape dynamics theory.
We finally discuss a set of proposals on the basis of the previous landscape types and model

characteristics that are presumably linked, and discuss the need for a comprehensive theory to
interpret landscape dynamics (Lambin, 1997), as made by some authors for modelling scales and
entities with LM (Agarwal et al., 2002; Gaucherel and Houet, 2009; Haase and Schwarz, 2009;
Verburg et al., 2006). We more specifically insist on anthropogenic landscapes, for the main reason
that these mosaics usually superimpose in a complex way human decisions concerning already
present natural processes. Such a theory should be in the continuation of landscape ecology
concepts (Forman and Godron, 1986), but based on original mathematical formalisms providing
new insights for the land change science (Turner et al., 2007). For example, it could be inspired
from complexity approaches (Bolliger et al., 2005; Crawford et al., 2005; Solé and Bascompte, 2006).
We discuss the implication of our suggestion for future research, which is needed to understand,
predict and project the dynamics of these landscapes in relation to local and global environmental
changes.

Table 1: The four main landscape types observed on continental areas (rows) are presented in regard
to the dominant properties of their respective models (columns). The table lists occurrences that are
frequent or scarce, focusing on: the presence of neutral models for each landscape type, the usual space
representation, multilevel or multiscale models, the vein networks taken into account in respective models.
We highlight in italics scarce intersections that are likely to be fruitful for landscape modelling and thus
for landscape understanding.

Landscape
types vs
Model prop-
erties

Spirit
(neutral models)

Space Scales Veins

Agricultural Regularly explored Often patchy Sometimes multi-
level

Often modelled,
of various types

Forested Regularly explored Raster Often multiscale Of various types,
yet rarely ex-
plicit

Semi-arid Scarce Raster Sometimes multi-
level, yet not ex-
plicit

Scarce

Peri-urban Scarce Sometimes
patchy

Sometimes multi-
level

Often modelled,
of various types
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2 Landscape processes: Current approaches

Here, we choose to review the four main landscape types of continental areas, continuously inter-
acting. In particular, the increasing human demography shows specific trends on present landscape
dynamics (Lambin et al., 2001): forests landscapes are often replaced by agricultural or arid ones
(Verburg and Veldkamp, 2004), agricultural landscapes are often replaced by urban or arid, partly
depending on anthropogenic or climatic conditions (Figure 1). Yet, these transitions are not sys-
tematic at all. Only a few landscape transitions, such as forest shifting to agriculture, have been
studied in depth up to now (Lambin, 1997; Usher, 1981), or shifts from rural to urban (Brown
et al., 2013). No exhaustive description of individual models is given here, while model comparisons
are helpful to emphasize their respective drawbacks and advantages (Agarwal et al., 2002; Haase
and Schwarz, 2009; Mas et al., 2014; Pontius Jr et al., 2008). Instead, we present a representative
list of processes concerned by each landscape type. Additionally, we systematically focus on one
specific feature of each landscape type and on implementations for typical models of the domain.

2.1 Agricultural landscape

Agricultural landscapes are very much human-driven landscapes. Such landscapes are often studied
using Land-Use and Land-Cover Change (called LUCC) models and are modelled as a selection of
socio-economic and biophysical variables that act as so-called “driving forces” of land-use changes
(Barton et al., 2010; Matthews et al., 2007; Verburg and Veldkamp, 2004). Land uses are simulta-
neously at the origin and results of land covers. Many models have shown that agricultural land
covers are mainly driven by multilevel land-use processes, involving on the one hand behaviours
of individuals and the upscaling of these behaviours, and on the other hand the macro-economic
processes and their downscaled effects on landscapes (Thenail et al., 2009; Willemen et al., 2012).
Hence, micro-economic theory and general equilibrium modelling are often combined to model
agricultural mosaics driven by isolated actors such as farmers and by regional or national economic
incentives (Costanza and Voinov, 2004; Lambin et al., 2000; Verburg and Veldkamp, 2004). Al-
though biophysical factors mostly do not “drive” land-use changes directly, they can participate in
land-cover changes (e.g., through climate change) and they influence land-use allocation decisions
(e.g., soil quality) (Viaud et al., 2010).

Land-cover patterns are influenced at different scales of analysis by different driving forces. At
the local level, this can be the local water policy or the presence of small ecologically valuable areas,
whereas at the regional level the distance to a market or an airport might be the main determinant
of the land-cover pattern. There are various ways to model such agricultural landscapes, depending
on the interaction between biophysical and socio-economic factors that for example may influence
farming practices (field and farm levels), as collective actions (community and village levels) or
as governance systems (district and province levels). The wish to merge these scales in causal
relationships has recently led to two broad classes of agricultural LM: the top-down approach,
based on remote-sensing and other data such as the CLUE-S model (Verburg et al., 2002), and
the bottom-up approach, based on local case-studies providing a refined understanding of human
decisions such as the DYPAL model (Gaucherel et al., 2006b, 2010; Valbuena et al., 2010). However,
we observed a limited understanding of the underlying mechanisms in the former approach and
difficulties to generalize the findings due to the limited geographic coverage of the latter approach,
thus justifying recent attempts to combine and even couple such approaches in landscape modelling
(Brown and Castellazzi, 2014; Castella et al., 2007; Houet et al., 2010).

Many models have shown agricultural landscapes to be spatially driven by multi-level human
decisions. We briefly illustrate this characteristic by highlighting a crop allocation system involv-
ing at least two successive organization levels (Castellazzi et al., 2010; Gaucherel et al., 2010;
Thenail et al., 2009): the patch level and the farm level. Agricultural landscapes indeed are often
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Figure 1: Illustration of the two main landscape models. There are: process-explicit models, using
specific processes (a), and neutral landscape models, using random functions (b). Process-explicit models
often simulate landscape structure dynamics in terms of land cover (top-right), as well as bio-ecological and
socio-economical processes (top-left) hosted by these structures. In addition, these processes are interacting
(dashed arrows) through neighbouring fluxes that likely modify their dynamics (dashed curves). Neutral
landscape models often simulate fixed landscape structures in raster mode (bottom-left), here adapted
from Saura and Mart́ınez-Millán (2000). To study agricultural landscapes some patchy neutral models
(bottom-right), associated to linear networks (in black), have recently been built on the basis of Voronöı
diagrams. Colours are representing hypothetical land covers.
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composed of a wide variety of patches: crop fields, woodlots, hedgerows as well as roads, rivers
and buildings, all influencing the farm property dynamics. Depending on the farm production
system, the landscape is usually forced to follow a defined crop allocation at farm scale, which has
been demonstrated to be the dominant driver of such human-based landscapes in temperate zones
(Baudry et al., 2003).

It may be relevant to focus on the pure temporal patterns observed within or between several
farms that can be modelled by Markov chain models (Le Ber et al., 2006; Usher, 1981). Con-
versely, spatial properties such as neighbouring fields appear to have a strong influence on the
central patch studied, thus suggesting to focus on spatial as well as temporal patterns. Agricul-
tural models have highlighted the interest of working with patchy mosaics, i.e., formed by mainly
uniform, autonomous and contiguous patches, exhibiting sharp boundaries with their neighbour-
hoods (Kotliar and Wiens, 1990; Le Ber et al., 2006). This new interest has furthermore focused
modellers’ attention on the deep distinction between the landscape composition (land cover) and
landscape configuration (land-cover shapes and spatial arrangements) (Li and Reynolds, 1994).

2.2 Forest landscape

Forested landscapes proceed from different mechanisms. At large scales, modellers usually handle
forest patches (woodlots), which exhibit very different types of vegetation cover, where forest would
have been considered as a single land cover in an agricultural landscape for instance (Baker and
Mladenoff, 1999; Perry and Enright, 2006; Scheller and Mladenoff, 2007). Many of the first forest
models were “gap models” that operate at the scale of individual trees or small forest gaps or
patches (Shugart, 1984). Forest parameters under study here may be the woodlot biomass, the
tree density or height, the species composition or forest age, etc.

Models may also help here to better understand the effects of fire on forests, and in particular
the role of landscape connectivity on fire spread, of fuel moisture content, of time since last fire,
etc. (Keane et al., 2013). Other models explore logging processes, by adjusting succession stages
and transitions between communities in order to reach a particular forest state. Fire and logging
are usually considered as disturbances of the landscape. In the more recent forest models, spatial
interactions at and beyond the first-order neighbourhood (of an individual tree or a woodlot) are
increasingly being taken into account.

The atomic entity of forested landscapes is the tree, therefore modelled by a combination of
various processes such as phenology, growth and ecophysiological processes, dispersion, competition
(inter- and intra-species), disturbances that may be natural (fire Finney, 1999; Keane et al., 2013,
herbivores Cousins et al., 2003, pests, etc.) or human-based in the case of pruning or harvesting
(de Coligny, 2006; Dufour-Kowalski et al., 2011; Kurz et al., 2000). For this landscape type, natural
and human drivers are combined in complex harvesting, land-use and climate interactions.

One typical example of such processes involved in forested LM concerns seed dispersal (Cousens
et al., 2008; Wang and Smith, 2002). Attempts to model seed dispersal can be described by
either phenomenological or mechanistic models. The former models mainly use Γ-function kernels
describing installation probability at a certain distance to the mother-plant (Clark et al., 2001;
Saltré et al., 2013). The latter dispersal models explicitly simulate grain (and pollen) dispersion
depending on seed downfall velocity, of the height of seed release, of the structure of the local wind-
field (in case of an anemochore species) or of animal movements (for zoochore species) that may
promote long distance dispersal (Clark et al., 2001; Nathan et al., 2008). Models are particularly
useful for highlighting the important role of long distance dispersal events to rapidly colonize
new areas (Saltré et al., 2013). LANDIS is a good example of the recent generation of forest
models (Mladenoff, 2004), modelling dispersal as well as many other vegetation (either natural or
anthropogenic) processes. Simpler models may help to analyze a more specific process (Seidl et al.,
2012; Usher, 1981). Deforestation is the most dramatic forest landscape dynamic and is, in most
cases, the result of a complex causality chain, which originates beyond the forestry sector.
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2.3 Arid landscape

Arid and semi-arid landscapes are subject to dryland degradation and vegetation transition pro-
cesses (Lambin, 1997; Rietkerk and Van de Koppel, 2008). Water availability and thus climate
forcing is the main driver of such landscapes, while most studies focus on the vegetation response
to water resources. Dryland degradation may start with agricultural, forestry or grazing land-
use intensification and proceed with more severe degradation factors among which are found soil
erosion and soil salinization (desertification). Hence, arid landscape dynamics rarely are purely
natural dynamics.

Other processes linked to disturbance caused by herbivores or fires have been studied in depth to
understand arid landscape dynamics and to help predict the unwanted transition from a vegetated
to a desert state (Scheffer and Carpenter, 2003). Drivers here are climate change impacting primary
production of vegetation (Sankaran et al., 2005), as well as socio-political mechanisms leading to
a “pressure of production on resources” (Barton et al., 2010; Krol and Bronstert, 2007). In most
cases, we observe a somewhat complex interaction between natural and anthropogenic processes,
such as in the desertification phenomenon (Lambin, 1997; Lejeune et al., 2002). Many models help
to address the questions why, where and when such arid landscape changes take place.

Some recent studies have explored a specific case of arid landscape dynamics involving binary
states (vegetated and non-vegetated states) and two opposing forces of landscape shaping. It has
been shown in particular that regular patterns may be the result of a competition force slowing
down the vegetation colonization and a facilitation force favouring the same colonization trend
(Couteron and Lejeune, 2001; Lejeune et al., 2002). Competition for water resource through roots
and facilitation against solar heat through the canopy act at different spatial scales, thus generating
a wide panel of regular patterns (spotted or banded patterns, etc.).

Other studies at higher scales have shown that the size distribution of vegetation clusters in
undisturbed plots follows a power law distribution (Scanlon et al., 2007): most patches of vegetation
have a small size, but a few of them have a very large size. Such self-organization pattern (i.e.,
landscape organization exhibiting a self-similar property, see Appendix A.2) seems to be the result
of internal dynamic processes driven by local interactions, yet sometimes controlled by external
factors such as precipitation (Rietkerk and Van de Koppel, 2008; Sankaran et al., 2005). Such
landscape functioning is still under debate and it is not yet clear how regular and self-similar
patterns differ. As evidenced by the previous references, models in this landscape type are still
often theoretical models.

2.4 Urban landscape

Similarly to agricultural landscapes, urban or periurban landscapes are mostly driven by humans
(Berechman and Small, 1988; Berling-Wolff and Wu, 2004). The historical development of urban
growth models are rooted in transportation and land-use planning. Early models postulated that
the interaction between two cities and within a city varied directly with the size of the (two) city
(cities), i.e., its demography, and inversely with the square of the distance between them (or the
distance to its centre) (Foot, 1981; Lowry, 1964). The urban area was represented as a transport
network and the flow and assignment of trips to the transport network modelled; later, more
complex trips (home-work journeys) have been modelled and validated, even taking into account
transport network congestion. In parallel, the idea emerged that trips and traffic in the city resulted
mainly from decisions at the individual household level. At this stage, public policy impacts on
household dispersion, employment constraints, urban agglomeration economics (and real-estate
prices) and other land-use planning are analysed in various urban growth models (Gusdorf and
Hallegatte, 2007; Gusdorf et al., 2008).

As a relevant process in urban LM, we would like to consider urban growth with two different
models. Interestingly, some cellular automaton models have emphasized the way in which locally
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made decisions may lead to global self-organized urban patterns which are rarely, if ever, in equilib-
rium (Viguié et al., 2014). For example, diffusion-limited aggregation models have been developed
to handle rapid disequilibrium growth often due to the emergence of suburbs (Batty et al., 1989;
He et al., 2013). Recent models focus on economics of agglomeration or ecological energetics, the
flow of goods and resources in the city to better explain such disequilibrium. Cellular automata
combining ideas of evolution, self-organization and fractal geometry enable to calculate transition
potentials mimicking land-use changes by agents’ behaviours (White and Engelen, 1993). These
models have been found in good agreement with observations. Similarly, the FRACTALYSE model
extends Christaller’s Central Place theory according to a fractal (self-similar) principle, i.e., areas
with smaller and smaller aggregated central places (Christaller, 1972; Thomas et al., 2008). Such
an approach indeed, enables optimizing urbanization processes by minimizing the use of places and
buildings nearby places already occupied.

The concept of urban systems (i.e., multi-city urban networks) is complementary to that of
urban growth and several models have documented and interpreted this concept (Pumain, 1989).
After early models based on the central place theory, a second period of landscape modelling
made a more explicit use of the networks, both in analyzing communication or migration flows
between cities and by suggesting that networks were more efficient and more democratic forms
of organization than hierarchies (He et al., 2013; Proulx et al., 2005; Pumain, 2006). Networks
of innovation diffusion, inter-city migratory fluxes, urban competition, socio-economic trajectories
of cities and comparative urban dynamics have become again implicit, but can help understand
urban systems (Berling-Wolff and Wu, 2004).

3 Landscape-model properties: Current practices

Landscape models (LM) as defined here should not be confused with “landscape analysis models”
aiming at analysing a spatial structure at landscape scales (Müller and Steinhardt, 2003). Instead,
LM are dedicated to simulation of landscape change and dynamics. The previous section empha-
sises that many dynamic LM have been reviewed in the literature, concerning agricultural, forest,
arid and urban landscapes (Berling-Wolff and Wu, 2004; Scheller and Mladenoff, 2007; Verburg
and Veldkamp, 2004). LM mentioned in this paper are merely a sample selected to highlight some
of the most important features of landscape modelling to explore some of the key challenges facing
those who build and use LM. To be exhaustive, this section should also address considerations
about the time management of models (Degenne et al., 2009), about the 2D-3D representation of
space in LMs (Gaucherel et al., 2010), and many others. The time and spatial dimension challenges
are urgent to improve our understanding of external needs such as biogeochemical processes, for
example.

Scientific models pertain to various epistemological modes (Levins, 1966). They often serve
an objective of comprehension through hypothesis tests and inference processes; they also help
to define prospective objectives thanks to scenario elaboration and decision support tools; they
finally offer a methodological objective by helping to define experiment protocols, by performing
in silico experiments, by developing new algorithms and equations to fulfil a scientific questioning.
In addition, another advantage of models is to integrate (to gather) knowledge into a coherent
framework. We are not discussing here other topics concerning landscape modelling such as data
calibration, validation, observation/simulation, comparison or sensitivity analyses. They are indeed
critical in this debate about landscape modelling, but this would need another full-paper and has
been well discussed in the literature (Jørgensen and Bendoricchio, 2001; Mas et al., 2014; Paegelow
et al., 2013).
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3.1 Explicit versus neutral landscape models: the “spirit” of models

The first and probably main dichotomy observed in LM concerns process-explicit versus neutral
models. Process-explicit models simulate landscapes by implementing one or several specific pro-
cesses, such as in most of the previously mentioned models (Costanza and Voinov, 2004; Gustafson,
2013; Seidl et al., 2012; Verburg et al., 2004) (Figure 1a). Instead, neutral models are simulating
landscapes with similar patterns and statistical properties without any process implementation
(Gardner and Urban, 2007; With and King, 1997) (Figure 1b). Such models are more or less
neutral, depending on the more or less extensive use of random functions to generate the pattern
(see Appendix A.1 for details). Neutral LM offer some kind of null-hypothesis tests translated
into the landscape dynamics topics. They help to answer the generic question: Does a random (or
almost random) function simulate observed patterns (or not) and, more rarely, observed dynamics
(Caillault et al., 2013)? If so, it is maybe not necessary to combine complex landscape generation
processes to interpret observed landscapes (Gaucherel et al., 2006a; Saura and Mart́ınez-Millán,
2000). Furthermore, if so, it becomes possible to model new virtual landscapes, dedicated to
intrinsic as well as extrinsic needs already mentioned.

We have earlier detailed the kind of processes that are explicitly taken into account for LM,
either of biophysical or socio-economical nature, and often both (Willemen et al., 2012). A promis-
ing way of combining these various landscape processes certainly pertains to the use of model
platforms in order to efficiently build models dedicated to landscape topics (de Coligny, 2006;
Dufour-Kowalski et al., 2011; Gaucherel et al., 2006b) (Figure 2a). Another promising opportu-
nity is that of Domain-Specific Language (DSL) (Degenne et al., 2009; Fall and Fall, 2001). DSL
are languages adapted to a specific target, such as modelling a broad class of landscapes, and
sharing various methods and knowledge for this goal. They are almost all process-explicit models,
with the exception of the RULES platform dedicated to neutral models (Gardner, 1999).

3.2 Raster versus patchy landscape models: the “space” of models

Another important dichotomy among LM, often mentioned but rarely discussed, concerns the type
of spatial representation chosen to be implemented in the model. Most LM handle raster mode,
i.e., grid-based or pixel-based, mosaics (Costanza and Voinov, 2004; Saura and Mart́ınez-Millán,
2000), because pixels are easier to manipulate than the various objects found in the vector mode
(i.e., polygons, polylines, points. . . ) (Degenne et al., 2009; Gaucherel et al., 2006a). Yet, most
landscapes, if not all, are patchy in the sense that they are composed of patches (polygons) that
are considered uniform relatively to their main attribute (often land cover), with sharp boundaries
separating them from the contiguous neighbours (Forman and Godron, 1986; Kotliar and Wiens,
1990). Such landscapes are often called categorical, as they suppose land-cover categories, with
discrete states of patches. In a sense, landscape modellers realize that landscapes are often discon-
tinuous and may be less efficiently handled by the classical tools developed for several decades, such
as point-pattern processes, interpolations as Geostatistics, etc. New surface-pattern analysis and
modelling tools are now able to handle highly non-stationary spatial structures (i.e., with variable
statistical moments) (Gustafson, 1998; Li and Reynolds, 1994; Tischendorf, 2001). We list here a
panel of advantages to model dynamic landscapes with patchy mosaics.

1. Realism – Among all advantages, the most convincing is certainly that patchy landscapes
are more realistic. This argument is quite obvious for agricultural and urban mosaics, i.e.,
human-based landscapes (Forman and Godron, 1986; Kotliar and Wiens, 1990), but is still
relevant for large forested and arid mosaics too, as we have seen that they often exhibit
regular (and thus patchy) patterns, due to discrete soil, topography or climatic properties.
Furthermore, this representation highlights existing boundaries between landscape elements.
We argue here that the patchy representation, particularly suited for man-made landscapes,
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may suit well to most natural landscapes too, considering their natural boundaries (Henne
et al., 2011; Moustakas et al., 2009; Viaud et al., 2010).

2. Complementarity – Patchy landscape simply is a new approach to study this object, thus
offering an independent and potentially innovative way of studying the same object. Such
independent ways of study have often been mentioned as useful to cross-check scientific
interpretation. Manipulating polygons or polylines indeed suggests working with other uni-
tary/single elements, computing and analytical methods, other topologies, etc. (Degenne
et al., 2009; Mackey, 2000). For example, polygons have at least as many neighbours as their
numbers of edges, while pixels always have eight neighbours, presenting the same directions.
This difference partly explains difficulties to handle vector mode objects, but also highlights
the richness of this approach.

3. Qualitative view – A patchy approach is often more intuitive and more rapid than pixel-based
approach once implemented, because it handles a single object (e.g., a polygon) instead of
handling a list of non autonomous and/or non independent pixels being linked to artificially
create the uniform polygon studied. As a corollary, the patchy approach enables working
with much larger landscape extents or much more rapidly for a similar extent. Yet, possible
drawbacks concern the need to model landscapes in a more qualitative view that is not always
easy to handle (e.g., distance related questions such as pollen or gene diffusions).

4. Property control – Interestingly, the patchy concept finally helps to understand the difference
between the landscape composition (land cover) and the landscape configuration (patch ar-
rangement) (Li and Reynolds, 1994). In a grid-based approach, both are mixed and handled
in a simultaneous way, because changing a pixel state changes its land cover simultaneously to
the land-cover pattern with its neighbours. While landscape composition and configuration
are not fully independent in a patchy approach, they appear to be sufficiently differentiated
to understand whether the studied landscape process concerns purely attributive changes,
such as agricultural successions (Castellazzi et al., 2008; Verburg and Veldkamp, 2004), or is
also modifying geometrical and/or topological changes, such as in urban systems for example
(Pumain, 2006).

5. Object-oriented view – Similarly to remote sensing transition between grid-based and object-
based detection, it is relevant in LM to manipulate objects (Flanders et al., 2003). The
patchy approach helps to dissociate objects within the landscape and to develop specific
dynamical processes for them. Instead, a pixel is changing continuously from a crop field,
a forest, a household, depending on probability transitions and thus is losing its nature all
the time (Usher, 1981). Hence, patchy landscapes that are rather widespread and intuitive
would possibly contribute to federate attempts directed towards the search for a general LM
framework.

3.3 Mono- versus multi-scale models: the “scale” of models

LM often are multiscale, in a sense of including objects spreading over continuous scales or of
including processes spread over several discrete organization levels. Multi-level models consider
landscapes with two or more discrete organization levels such as temperate agricultural landscape
processes mainly based on crop field rotations and farmer decisions. Other levels than farmers
(villages, governments. . . ) are often useful in modelling complex human-based landscapes. A
more continuous view of scales, quite relevant in the case of natural landscapes (Pascual and
Guichard, 2005), would probably be less appropriate and more difficult to implement in human-
driven landscapes, due to our perception of discrete levels of actors in landscapes. It has been
shown that crop allocation at the farm scale is responsible for most agricultural landscape patterns
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(Benôıt et al., 2012; Houet et al., 2010; Rizzo et al., 2013; Thenail et al., 2009). Studying the
sole crop rotation is a fruitful approach when computed with Markov chains (Le Ber et al., 2006),
although we cannot ignore the spatial autocorrelation caused by farm management (Baudry et al.,
2003). This observation remains relevant for higher organization levels such as regional decisions,
but today models rarely account for such multiscale/multilevel manipulations.

Vegetation cover in forested or arid ecosystems also shows various scaling behaviours. In partic-
ular, self-similar relationships between vegetation cluster size (scale) and their number (count) can
define self-organized patterns of forested studied landscapes (Scanlon et al., 2007). Several models
such as in arid or forested areas have shown that local interactions may exhibit scaling laws over a
wide range of conditions in arid areas, thus providing examples illustrating the criticality theory,
i.e., discontinuous transitions between vegetated and non-vegetated zones (Pascual and Guichard,
2005; Rietkerk and Van de Koppel, 2008). Yet, such behaviours (Solé and Bascompte, 2006) are
not convincing: first, they are not robust over scales (they concern only few orders of magnitude);
second, they are not fully understood (for example the scaling exponent cannot be predicted by the
originated processes); third, they are phenomenological and should still be related to the ecological
processes involved (Gustafson, 2013); and fourth, if some processes (such as preferential attach-
ment) have shown self-similar behaviours, it has not been proved that other processes would not
succeed in doing so. In other words, this self-organization approach is close to a neutral model, but
probably not fully appropriate for LM, as we think it will probably not provide in depth processes
to understand landscape functioning.

3.4 Modelling networks or not: the “veins” of models

Agricultural and urban systems exhibit physical or more abstract linear networks in dynamic
landscapes (Berling-Wolff and Wu, 2004; Turner and Gardner, 1991). Agricultural areas are for
example characterized by the so-called “blue veins” constituted by river networks, and by “green
veins” such as hedgerows and other grass margin networks that all have strong effects in the
landscape generation and functioning (Thenail and Baudry, 2004). Fields and farms indeed are
managed according to the islet they belong to, as farmers naturally follow these networks for
defining their boundaries. Other networks (veins) are frequently found in rural areas, such as
roads, dyke or ditch networks that may structure the landscape as well. Models have for example
shown how a dyke network can influence the animal population viability it is hosting (Retho et al.,
2008).

Above all, the field mosaic itself is sometimes modelled by the use of a network, considering
that each patch is characterized by a gravity centre (or a summit of a graph) and is linked to its
neighbours (with the edge of the same graph) (Gaucherel, 2008; Le Ber et al., 2006). Such linear
networks can help to develop new analyses and to model tools as their objects have specific proper-
ties (Proulx et al., 2005; Strogatz, 2001). They grow or divide in specific patterns and topological
dynamics that are very different from point-patterns or surface-patterns already mentioned. Urban
landscapes highlight in particular the role of hidden networks such as communication and transport
networks. Phone, electric or energy (e.g., gas) networks may strongly structure the emergence of
new households in suburban areas (Berechman and Small, 1988; Pumain, 2006). Transport net-
works, such as roads, railroads or tracks are also a strong constraint in the landscape dynamics
(Forman and Godron, 1986).
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4 What model characteristics for what landscape type:
Research priorities

The appropriateness of model characteristics for modelling different landscape types has been rarely
studied in detail. To combine the previous sections dedicated to landscape types and to LMs should
help us to define research priorities in this field (Figure 1). For example, we mentioned that patchy
models simulate agricultural landscapes, that neutral models are used to study forested landscapes,
that multiscale models are applied to arid landscapes, and that urban landscapes are often modelled
by taking into account various networks. Such approaches are not exhaustive. We question here
whether further developments of the previous model characteristics for new landscape types would
open fruitful and complementary avenues to the field.

1. Neutral models – Neutral models, acting as null-hypothesis tests, are useful to identify mech-
anisms responsible for the observed landscape pattern or, rather, for refutation of absent
mechanisms (Gardner and Urban, 2007; With and King, 1997). It is often discussed how a
specific process is able to generate a specific pattern, but it is more rarely tested how random
or almost-random processes are not able to do the same.

2. Patchy models – A patchy approach is almost always possible to use, either according to some
segmentation criteria or empirically and usually leads to a new conception of the studied
landscape. Indeed, to use uniform patches with sharp boundaries between them is equivalent
to discretize space in a specific way, radically different to that of more regular continuous or
periodical representations (Gaucherel et al., 2006a; Paudel and Yuan, 2012). This is obviously
the result of approximations within each patch, never perfectly uniform, but this approach
also enables better taking into account various “singularities” observed in real landscapes.
Singular presences are common in human-driven landscapes, as humans usually differentiate
land covers and avoid managing fuzzy boundaries. It is also relevant for natural landscapes
(Levin et al., 1993), in particular at higher scales, when smoothed (geological, lithological or
hydrographical) boundaries between land covers are progressively reduced to a narrow line
(Moustakas et al., 2009; Viaud et al., 2010). Fluxes or organism movements can be stopped
at or redirected along these lines of highly irregular (non-stationary) zones, thus leading
to new behaviours of involved ecological processes (Forman and Godron, 1986; Turner and
Gardner, 1991).

3. Multiscale models – Multilevel and multiscale LM are being increasingly studied, but could
be further explored in new contexts. While it is often easier to work at only one or two
scales to simulate a pattern, the frequent roles of lower and higher scales have been shown
in these pattern generations (called emergent or immergent). When scales are considered
as discrete levels, the hierarchy theory has proposed a heuristic approach for many ecolog-
ical and environmental studies (O’Neill et al., 1986; Willemen et al., 2012). When scales
are continuously successive, many concepts such as self-similarity (Pascual and Guichard,
2005; Scanlon et al., 2007; Solé and Bascompte, 2006) or multifractality, and many tools
such as geostatistics, wavelet transform (Grossman and Morlet, 1984), or local convolutions
(Gaucherel et al., 2008) have been developed in order to describe and sometimes to model
them. Hence, such multiscale LM can be expected to flourish in the future.

4. Network models – Finally, linear networks are of a great importance in landscape dynamics.
There are several reasons why they have not been studied in a similar extent to that of other
landscape features: i) they are rarely the central object of landscape studies, far behind crop
fields or tree stands for example (Forman and Godron, 1986); ii) reliable mathematical tools
to handle networks such as graph theory have been considered only recently in environmental
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sciences (Strogatz, 2001); iii) many ecologists were not sufficiently aware of the role of these
linear elements before some studies showed how landscape structures are constrained by
them (Proulx et al., 2005). Studying relationships between a landscape and the networks
that inhabit it (e.g., green veins, blue veins, or roads) will probably lead to new discoveries.
In case of urban or agricultural mosaics, landscapes may sometimes be reduced to the sole
network that is carrying most of the landscape information (Thenail and Baudry, 2004).
Further, if we widen our considerations from linear networks to every kind of network, each
landscape element can be considered as the node of a network, related to its neighbours by
the network edges. Such topological network may be rich in information and interesting to
study as such, opening new pathways to model landscapes (Gaucherel et al., 2012).

5 Discussion: Towards a dynamic landscape theory

5.1 Universality behind case studies

On the basis of the landscape and model characteristics summarized in the previous sections,
we suggest that there exists a profound unity between landscape-modelling case studies. Patchy
structures, network roles and multiscale behaviours justify searching for a unified view of dynamic
landscapes. The landscape concept is generic and the heterogeneity concept is universal. The
central paradigm of landscape ecology is that the spatial structure of a landscape has an effect on
the underlying ecological processes (Forman and Godron, 1986; Turner and Gardner, 1991). Some
properties of the landscape such as heterogeneity, connectivity or fragmentation strongly influence
the exchange and flow of organisms, matter and energy between the different components. From
the start, deciphering the structural and the functional aspects of connectivity has been a challenge
to landscape ecologists (Tischendorf and Fahrig, 2000) and discussions are still on-going. Moreover,
this branch of ecology insists on the importance of scales and integration of processes (Dungan
et al., 2002).

Multiscale and network concepts, for example, are widespread and have recently appeared in
the literature for a wide range of specific landscape studies (Caillault et al., 2013; Gaucherel, 2008;
Thenail and Baudry, 2004). They offer opportunities for renewing the usual landscape ecology
concepts (e.g., heterogeneity) that are no longer sufficient to understand complex and dynamic
systems. Lambin mentioned that “the most fundamental obstacle to progress in the understand-
ing and prediction of human impacts on terrestrial ecosystems lies in the lack of comprehensive
theory and land-use changes” (Lambin, 1997). This remark, made for human-driven landscapes,
may also be addressed to more natural landscapes: Do we today have at our disposal a compre-
hensive theory of land-cover dynamics? (Bolliger et al., 2005). We have therefore to search for a
common theoretical framework proposing coherent concepts and adapted formalisms to improve
our understanding and modelling of landscape dynamics. From a more practical point of view,
the UML (Unified Modelling language) emerged to provide a simpler and more universal language
to model, but it remained poorly used in landscape modelling (Degenne et al., 2009). The theo-
retical statement should not conceal the important role of data acquisition, without which no LM
could exist, and the role of model application and validation in specific sites and dates. We are
also conscious of the limits of describing ecological processes from landscape patterns in this way
(Schröder and Seppelt, 2006). A theoretical framework for all types of terrestrial ecosystems, if
any, should bear in mind such a debate and offer generic tools to bridge the gap between them.

5.2 Complexity theory as a conceptual basis

Awareness that a certain complexity was present in most landscapes has led to a holistic approach
to landscape (Gallagher and Appenzeller, 1999; Looijen, 1998). The theory of complexity has shown
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that the state and behaviour of certain systems does not result from the simple linear combination
of the state and behaviour of its separate parts. Thus new properties are seen to emerge, which
originate in the non-linearity and non-equilibrium of these systems (in thermodynamic terms).
The study of these complex systems suggests holistic strategies that apply to landscape modelling
as the landscape is a complex object (Bolliger et al., 2005; Saltré et al., 2013), which often has
complex dynamics (Bürgi et al., 2004). It shows emerging behaviours/patterns that are the result
of complex interactions, such as diffusion or dispersal, crop allocation system or land-cover tran-
sition (time patterns), heterogeneous and multiscale growth of areas (spatial patterns), between
its elementary/single constituents. If such processes seem very different, they may all appear for
various situations and highly different landscape types. It is thus relevant to study them in unusual
situations in order to trigger a possible unity hidden behind landscape dynamics of distinct types.

Landscapes are dynamical, a property that often remained understudied compared to the land-
scape pattern in itself. Some diachronic works intended to compare successive dates of these
patterns (Kolb et al., 2013; Mackey, 2000; Paudel and Yuan, 2012), but it was a preliminary task
compared to complex, superimposed, multiscale and long term dynamics that are at play in every
landscape. We now need to analyse these dynamics for themselves and ask related questions: Is a
landscape stationary (i.e., with constant statistical moments) or does it present some discontinu-
ities in time (Gaucherel et al., 2012)? Is a landscape dynamic chaotic? Is it ergodic (i.e., with the
same behaviour averaged over time as averaged over space)? What are its asymptotical states, if
there are some (Gaucherel, 2011)? Does the landscape gather some conflicts (i.e., opposed changes
of the same unit), for example between dynamics operating at different scales? We today need a
conceptual shift to address these new issues.

Self-similar approaches in particular are in the vein of complexity theory, as they manage
multiscale, non-linear and often out-of-equilibrium systems (Pascual and Guichard, 2005; Solé and
Bascompte, 2006). Neutral and multiscale models are recent attempts to detect and quantify
self-organization, while patchy mosaics and networks are well adapted to such attempts, too (He
et al., 2013; Paudel and Yuan, 2012). This explains why several scientists have begun to adapt
these approaches to landscape studies (see Appendix A.2 for details), as mentioned in the previous
section. Patchy and network systems are complex as they handle non-linear behaviour in space and
time, for fluxes or movements that they shelter (Gaucherel, 2008; Proulx et al., 2005). Hence, the
four model characteristics detailed in this paper are well adapted to further develop a complex and
unified view of terrestrial landscapes. They are probably not yet exhaustive, as specific temporal
dynamics, driving forces, and spatial interactions of neighbouring or level of integration may be
explored in more detail and compared between landscapes.

To go a step further, it has been mentioned that self-organization is a kind of optimization of the
structure (D’Souza et al., 2007). We propose here the hypothesis that every landscape is a structure
optimized to better use (dissipate) its incomes (of energy and matter). Neutral LM may help to
test this working hypothesis, by assembling various local and path-dependent processes (Brown
et al., 2005), i.e., depending on the previous time step (or steps) only, acting on patches, linear
networks and point-patterns, and being finally optimized in order to fulfil the various constraints
imposed to the landscape. Some recent illustrations of such landscape optimisations may be found
in the literature (Gaucherel, 2011) and we recently explored this issue with the optimal control
theory (Whittle, 1996) to summarize a landscape by defining its Hamiltonien function. This
attempt proposes an appealing framework to improve our description of very different (yet, with
common properties) landscapes. Such work is in the continuity of landscape ecology, as landscape
heterogeneity may then be interpreted as a consequence of such optimization of land uses and/or
land covers. In a sense, the landscape exhibits some properties close to that of living organisms,
with changing, scaling, emerging and stabilizing patterns (heterogeneity properties) depending on
its driving forces.
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5.3 Mathematical formalism and modelling as a toolkit

To imagine new concepts is a prerequisite for developing a new dynamic landscape theory, but it will
be necessary to simultaneously develop a mathematical formalism, in order to generically handle
these concepts over a wide range of landscape types. There are very few attempts, to our knowledge,
to formalize landscapes in terms of equations. The literature provides powerful Markov chains to
manage landscape composition (Tepley and Thomann, 2012), under stationary and sometimes
first order neighbourhood hypotheses (Le Ber et al., 2006), while reaction-diffusion equations are
sometimes able to manage landscape configuration, for natural and non-patchy lattices (Couteron
and Lejeune, 2001). Yet, the coupling of landscape composition/configuration is rarely managed
and agricultural or forested mosaics have not been set in equations. It is today a challenge for
example to mathematically describe spatial autocorrelation of patchy and highly discontinuous
patterns (Gaucherel, 2011; Levin et al., 1993), in order to reveal hidden processes, to integrate them,
to determine asymptotical behaviour or to predict landscape behaviour in alternative conditions.
Here are the urgent issues of this formalization objective. Furthermore, the dynamics of such
structures are still far from being mathematically described. For example, it is a challenging
question to understand whether some landscapes are at equilibrium or not. The self-organization
or optimization concepts have the advantage of offering coherent formalisms to handle various
landscape types such as relatively continuous patterns. Statistical mechanics and optimal control
theory (Whittle, 1996), may fulfil this requirement to open the way to holistic studies of landscapes.

A recent approach based on formal grammars, and in particular those related to graph rewriting-
rules opens another track in this direction (Gaucherel et al., 2012, 2010), especially for highly
non-stationary (discontinuous in space and time) mosaics. Models based on formal languages,
such as L-systems used in linguistics and biology (Lindenmayer, 1968a,b), develop objects using
grammar-linked components to simulate automata: landscape patches are considered as words
whose dynamics are described by a succession of rules that a grammar helps to formalize. It has
been demonstrated that most patchy landscape compositional as well as configurational changes
may be formalized by a combination of eight rules only: a landscape patch rotation, merge, split,
dilation, erosion, appearance, disappearance and no change (Gaucherel et al., 2012, 2010). This
so-called landscape language has a flavour of universality and appropriately illustrates the possible
unification of a wide range of landscape dynamics, be they patch, linear network or natural gradient
changes.

Such kind of formalisms has the potential to widely spread into environmental disciplines. In
a sense, they offer bottom-up approaches that require symmetrical top-down approaches, such as
global optimization procedures, to complete our understanding of landscape dynamics (Castella
et al., 2007; Houet et al., 2010). This is why it is still important to develop mechanistic models and
to model contingent and specific processes (Gustafson, 2013), with local and Markovian rules. As
a corollary, another challenge for landscape dynamic studies consists in developing model designs
able to conciliate the rich ecological and socioeconomic knowledge we have with the requirement
for formal models amenable to generalization across landscape types. Adequate methodologies
such as platforms and domain-specific languages are at present under development to help this
purpose (Figure 2b) (de Coligny, 2006; Degenne et al., 2009; Fall and Fall, 2001; Gaucherel et al.,
2012).
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6 Conclusion

Continents are undergoing rapid change. At fine scales, terrestrial landscapes are rapidly changing
too, whatever they are, agricultural, forested, urban or arid. In addition, these four main landscapes
are continuously meeting together in space and time, shifting from one of the previous types to
another, under natural (climate change) and/or human driving forces (Figure 1). To benefit from
a relatively unified theory of such landscape dynamics would help to better understand each of
these landscape types as well as each observed landscape type transition. We have discussed here
only intrinsic needs to understand the landscape object, but such a review can obviously also
serve extrinsic needs: for example, population dynamics, fire and pest spread, human production
systems, climatic influence are environmental processes that would all benefit from an improved
landscape modelling. Such improvements in dynamic landscape theory and modelling would greatly
facilitate the (weak or strong) coupling between terrestrial landscapes and species and would serve
climate change and biodiversity assessments.

We are now starting to have powerful models to manipulate various landscape dynamics and to
better understand their functioning. Landscape research offers several interesting concepts to un-
derstand landscapes, but such concepts are insufficiently adapted to recent modelling approaches.
The intrinsic dynamic properties of landscapes, their multiscale properties, the network and patch
interactions they inhabit are difficult to manage by the simple use of heterogeneity and fragmenta-
tion notions. To improve as well as to harmonise current landscape modelling, we propose in this
review and discussion paper to explore several actions: i) to develop explicit process-based models,
handling both natural and human driving forces, simultaneously to neutral LMs; ii) to favour the
interaction of various landscape type models; iii) to develop patchy, network (of various types) and
multiscale modelling; iv) and above all, to develop a coherent theoretical framework of dynamic
landscape, on the basis of new and powerful neutral models and mathematical formalisms.
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A Appendix

A.1 Neutral landscape models

Ecology is increasingly using “virtual” landscape modelling to evaluate the links between ecolog-
ical processes and the spatial and temporal patterns they produce. Neutral landscape models, in
particular, were designed to generate a landscape in the absence of a studied ecological process
(Gardner et al., 1987; Saura and Mart́ınez-Millán, 2000). Unlike explicit LM that would simulate
dynamic functions and relations between landscape elements, neutral models do not intend to pro-
duce the spatial pattern of any particular observed landscape. Neutral models deal more precisely
with one or several characteristics of composition and configuration of real landscapes (Gaucherel
et al., 2006a; With and King, 1997). These models may belong to most of the above-mentioned
landscape types (agricultural, forested, arid or urban mosaics). After comparisons with observed
landscapes, spatial landscapes and structures simulated by neutral models can discriminate be-
tween influences likely to be caused by random (i.e., neutral) rather than real structures. Their
contribution to landscape ecology has been extensive: development of spatial indices to describe
landscape configurations, forecasting of configurations essential for ecological phenomena, defini-
tion of connectivity, understanding of landscape influence on animal species or seeds, development
of a generic model of spatial complexity, identification of ecological consequences of spatial homo-
geneity. Many ecological applications for neutral models are found in studies on the dispersion and
abundance of animal populations, forest fires or biodiversity (With and King, 1997).

There is a gradation of virtual landscapes, from the pure neutral model up to the almost
explicit model (Figure 2). Landscapes simulated by neutral models are often pixel matrices (called
raster mode) for which a land cover is associated to each pixel. In the simplest neutral model,
random distributions of the two present classes are performed by associating each pixel with a
probability of belonging to one of the classes. This simple model only constrains class densities
(i.e., composition) and not their spatial distributions. The absence of spatial correlations in such
models does not allow accounting for the complexity of real landscapes (Saura and Mart́ınez-
Millán, 2000). Although rudimentary, the random model has identified characteristics such as
the critical value of the class probability beyond which certain properties (e.g., connectivity) of a
simulated landscape are drastically different. More sophisticated, some configuration models also
define a directional adjacency matrix 𝑄. The 𝑄𝑖𝑗 elements translate the probability of a pixel
belonging to type 𝑖 being adjacent to a pixel of type 𝑗, with adjacency possibly defined according
to direction and distance (Gardner, 1999). These models can be refined by the modified random
cluster method, which controls the shapes of simulated classes, by aggregating pixels together
(Saura and Mart́ınez-Millán, 2000). Many other neutral LMs have been proposed, for example on
the basis of an iterative process changing some pixel classes, and thus leading to hierarchical or
fractal patterns (Figure 2b).

All neutral models presented here deal with landscape considered as a continuous entity in
raster mode, where the pixel is an autonomous (yet not independent) entity. Several ecological
studies, however, need to represent landscape with a patchy map in which areas are considered
homogeneous from the point of view of the ecological process studied (Kotliar and Wiens, 1990;
Levin et al., 1993). This becomes crucial in anthropogenic landscapes and those marked with linear
networks (roads, rivers, hedgerows, etc.) or field limits. For this purpose, new neutral LMs have
been developed (Gaucherel, 2008), which sometimes use a Gibbs algorithm to select patch classes
or to draw linear networks. Furthermore, neutral LMs appear increasingly relevant as a basis to
build a coherent theoretical framework for dynamical landscapes. By offering a null-hypothesis
test, they help to discriminate between ecological processes and random functions. By handling
more or less simple statistical equations to describe landscapes, they offer opportunities to capture
patterns and/or dynamics within parsimonious and coherent formalisms.
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Figure 2: Scheme illustrating the principle of a modelling platform (a) and the architecture of an example:
the DYPAL landscape modelling platform (b). The principle of a platform aims at finding a compromise
(the greatest common divisor GCD) between a range of models dedicated to various objectives and a
universal model addressing all possible objectives (as the least common multiple LCM). A platform is
built on the basis of a generic kernel (bottom, in blue) dedicated to the common object modelled (here
patchy landscapes of the DYPAL platform), and then developed at low cost in various dedicated models
(in warm colours).
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A.2 Landscape self-organization

The concept of self-organization, inspired from the complexity theory and from physical systems,
offers an appealing way for landscape modelling. By definition, a landscape would be called self-
organized if at least one of its properties (e.g., the spatial distribution of tree densities) exhibits
regular (i.e., with non random patterns at a specific scale) or self-similar (i.e., fractal, with a
power-law scaling) behaviours (Rietkerk and Van de Koppel, 2008; Solé and Bascompte, 2006).
The scientific community questions whether landscapes are often self-organized. If not, why? If
yes, which ecological processes are responsible for the landscape self-organization?

The concept of self-organization has often been advocated to investigate ecological processes.
For example, it has been observed that forested landscapes, both in temperate and tropical areas,
sometimes exhibit self-organized patterns (Gaucherel, 2011; Scanlon et al., 2007; Solé et al., 1999).
However, because it is still a phenomenological approach, self-organization is of little help to
understand the forest functioning, and only provides a starting reference framework. By focusing
on heterogeneous landscape dynamics, we wish to understand by which mechanisms (vegetation
dispersion, competition, land-cover allocation. . . ) self-organized structures emerge (Rietkerk and
Van de Koppel, 2008; Solé and Bascompte, 2006). It is equally important to understand when
self-organization fails to explain observed landscapes. What are the respective roles and weights of
local rules (bottom-up controls), of more global rules (top-down controls), and of scaling properties
in driving the fate of landscapes? What are the respective roles of human decisions and natural
forcings? Under which conditions are simplified (yet realistic) landscape systems self-organized?

Two of the most common theoretical forest models exhibit self-organization and present inter-
esting opportunities to understand complex landscapes: optimized and Turing-like patterns. On
the one hand, recent studies have presented newly scaling properties for forested landscapes. High-
lighting a link with optimal control theory and physical statistics, it is advocated that extended
patchy forests may sometimes self-organize by optimizing the ecological processes involved in their
generation. Preliminary forest models, based on a Hamiltonian or other summarizing functions of
the forest element interactions have been developed in order to test the landscape self-organization
hypothesis (Gaucherel, 2011; Lefever and Lejeune, 1997). On the other hand, Turing-like patterns
concern periodical vegetation covers generated on the basis of opposite forces acting at different
scales (Couteron and Lejeune, 2001; Lejeune et al., 2002). A reaction-diffusion process or, analo-
gously, a competition-facilitation process has already proven its ability to reproduce the properties
of a large range of spotted, gapped or banded vegetation covers (Lefever and Lejeune, 1997; Lejeune
et al., 2002). Such vegetations appear to be self-organized too, yet on the basis of other patterns
than the auto-similar properties mentioned earlier. By suggesting a relatively simple concept to de-
scribe landscapes, self-organization again offers opportunities to capture patterns and/or dynamics
within parsimonious and coherent formalisms.
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R. (2009), “Design of a Domain Specific Language for modelling processes in landscapes”, Ecological
Modelling , 220(24): 3527–3535, [DOI]. (Cited on pages 11, 12, 13, 16, and 18.)

D’Souza, R. M., Borgs, C., Chayes, J. T., Berger, N. and Kleinberg, R. D. (2007), “Emergence of tempered
preferential attachment from optimization”, Proceedings of the National Academy of Sciences of the
United States of America, 104(15): 6112–6117, [DOI]. (Cited on page 17.)

Dufour-Kowalski, S., Courbaud, B., Dreyfus, P., Meredieu, C. and de Coligny, F. (2011), “Capsis: an open
software framework and community for forestry modelling”, Annals of Forest Science, 69: 221–233,
[DOI]. (Cited on pages 9 and 12.)

Dungan, J. L., Perry, J. N., Dale, M. R. T., Legendre, P., Citron-Pousty, S., Fortin, M.-J., Jakomulska,
A., Miriti, M. and Rosenberg, M. S. (2002), “A balanced view of scale in spatial statistical analysis”,
Ecography , 25(5): 626–640, [DOI]. (Cited on page 16.)

Fall, A. and Fall, J. (2001), “A domain-specific language for models of landscape dynamics”, Ecological
Modelling , 141(1–3): 1–18, [DOI]. (Cited on pages 12 and 18.)

Finney, M. A. (1999), “Mechanistic modeling of landscape fire patterns”, in Mladenoff, D. J. and Baker,
W. L., eds., Spatial Modeling of Forest Landscape Change: Approaches and Applications, pp. 186–210,
Cambridge; New York (Cambridge University Press). [Google Books]. (Cited on page 9.)

Flanders, D., Hall-Beyer, M. and Pereverzoff, J. (2003), “Preliminary evaluation of eCognition object-
based software for cut block delineation and feature extraction”, Canadian Journal of Remote Sensing ,
29(4): 441–452, [DOI]. (Cited on page 13.)

Foot, D. H. S. (1981), Operational Urban Models: An Introduction, London; New York (Methuen). (Cited
on page 10.)

Forman, R. T. T. and Godron, M. (1986), Landscape Ecology , New York (John Wiley & Sons). (Cited on
pages 5, 6, 12, 14, 15, and 16.)

Gallagher, R. and Appenzeller, T. (1999), “Beyond reductionism”, Science, 284(5411): 79–79, [DOI].
(Cited on page 16.)

Gardner, R. H. (1999), “RULE: map generation and a spatial analysis program”, in Klopatek, J. M. and
Gardner, R. H., eds., Landscape Ecological Analysis: Issue and application, pp. 280–303, New York
(Springer). (Cited on pages 12 and 20.)

Gardner, R. H. and Urban, D. L. (2007), “Neutral models for testing landscape hypotheses”, Landscape
Ecology , 22(1): 15–29, [DOI]. (Cited on pages 12 and 15.)

Gardner, R. H., Milne, B. T., Turner, M. G. and O’Neill, R. V. (1987), “Neutral models for the analysis
of broad-scale pattern”, Landscape Ecology , 1: 19–28, [DOI]. (Cited on pages 5 and 20.)

Gaucherel, C. (2008), “Neutral models for polygonal landscapes with linear networks”, Ecological Mod-
elling , 219(1–2): 39–48, [DOI]. (Cited on pages 14, 16, 17, and 20.)

Gaucherel, C. (2011), “Self-organization of patchy landscapes: Hidden optimization of ecological pro-
cesses”, Journal of Ecosystem & Ecography , 1(2), [DOI]. (Cited on pages 17, 18, and 22.)

Gaucherel, C. and Houet, T. (2009), “Preface to the selected papers on spatially explicit landscape mod-
elling: Current practices and challenges”, Ecological Modelling , 220: 3477–3480, [DOI]. (Cited on
page 6.)

Living Reviews in Landscape Research
http://www.livingreviews.org/lrlr-2014-2

http://dx.doi.org/10.1109/PMA.2006.9
http://dx.doi.org/10.1016/j.ecolmodel.2009.06.018
http://dx.doi.org/10.1073/pnas.0606779104
http://dx.doi.org/10.1007/s13595-011-0140-9
http://dx.doi.org/10.1034/j.1600-0587.2002.250510.x
http://dx.doi.org/10.1016/S0304-3800(01)00334-9
http://books.google.com/books?id=mfIlUpuumMsC&pg=PA186
http://dx.doi.org/10.5589/m03-006
http://dx.doi.org/10.1126/science.284.5411.79
http://dx.doi.org/10.1007/s10980-006-9011-4
http://dx.doi.org/10.1007/BF02275262
http://dx.doi.org/10.1016/j.ecolmodel.2008.07.028
http://dx.doi.org/10.4172/2157-7625.1000105
http://dx.doi.org/10.1016/j.ecolmodel.2009.06.025
http://lrlr.landscapeonline.de/lrlr-2014-2


26 Cédric Gaucherel, François Houllier, Daniel Auclair and Thomas Houet

Gaucherel, C., Fleury, D., Auclair, A. and Dreyfus, P. (2006a), “Neutral models for patchy landscapes”,
Ecological Modelling , 197(1–2): 159–170, [DOI]. (Cited on pages 12, 15, and 20.)

Gaucherel, C., Giboire, N., Viaud, V., Houet, T., Baudry, J. and Burel, F. (2006b), “A domain specific
language for patchy landscape modelling: the brittany agricultural mosaic as a case study”, Ecological
Modelling , 194(1–3): 233–243, [DOI]. (Cited on pages 7 and 12.)

Gaucherel, C., Alleaume, S. and Hely, C. (2008), “The comparison map profile method: A strategy for
multiscale comparison of quantitative and qualitative images”, Transactions on Geoscience and Remote
Sensing , 46(9): 2708–2719, [DOI]. (Cited on page 15.)

Gaucherel, C., Griffon, S., Misson, L. and Houet, T. (2010), “Combining process-based models for future
biomass assessment at landscape scale”, Landscape Ecology , 25: 300, [DOI]. (Cited on pages 7, 11,
and 18.)

Gaucherel, C., Boudon, F., Houet, T., Castets, M. and Godin, C. (2012), “Understanding Patchy Land-
scape Dynamics: Towards a Landscape Language”, PLoS ONE , 7(9): e46064, [DOI]. (Cited on pages 16,
17, and 18.)

Grossman, A. and Morlet, J. (1984), “Decomposition of Hardy functions into square integrable wavelets of
constant shape”, SIAM Journal on Mathematical Analysis, 15(4): 723–736, [DOI]. (Cited on page 15.)

Gusdorf, F. and Hallegatte, S. (2007), “Compact or spread-out cities: Urban planning, taxation, and the
vulnerability to transportation shocks”, Energy Policy , 35(10): 4826–4838, [DOI]. (Cited on page 10.)

Gusdorf, F., Hallegatte, S. and Lahellec, A. (2008), “Time and space matter: How urban transitions create
inequality”, Global Environmental Change, 18(4): 708–719, [DOI]. (Cited on page 10.)

Gustafson, E. J. (1998), “Quantifying landscape spatial pattern: What is the state of the art?”, Ecosystems,
1(2): 143–156, [DOI]. (Cited on page 12.)

Gustafson, E. J. (2013), “When relationships estimated in the past cannot be used to predict the future:
using mechanistic models to predict landscape ecological dynamics in a changing world”, Landscape
Ecology , 28(8): 1429–1437, [DOI]. (Cited on pages 12, 14, and 18.)

Haase, D. and Schwarz, N. (2009), “Simulation Models on Human-Nature Interactions in Urban Land-
scapes: A Review Including Spatial Economics, System Dynamics, Cellular Automata and Agent-based
Approaches”, Living Reviews in Landscape Research, 3: lrlr-2009-2, [DOI]. URL (accessed 25 February
2014):
http://www.livingreviews.org/lrlr-2009-2. (Cited on pages 6 and 7.)

He, C. Y., Zhao, Y. Y., Tian, J. and Shi, P. J. (2013), “Modeling the urban landscape dynamics in a mega-
lopolitan cluster area by incorporating a gravitational field model with cellular automata”, Landscape
and Urban Planning , 113: 78–89, [DOI]. (Cited on pages 11 and 17.)

Henne, P. D., Elkin, C. M., Reineking, B., Bugmann, H. and Tinner, W. (2011), “Did soil development
limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical
hypothesis with a dynamic landscape model”, Journal of Biogeography , 38(5): 933–949, [DOI]. (Cited
on page 13.)

Houet, T., Loveland, T. R., Hubert-Moy, L., Gaucherel, C., Napton, D., Barnes, C. A. and Sayler, K.
(2010), “Exploring subtle land use and land cover changes: a framework based on future landscape
studies”, Landscape Ecology , 25: 249–266, [DOI]. (Cited on pages 7, 14, and 18.)

IPCC (2007), “Climate Change 2007”, Cambridge; New York (Cambridge University Press). (Cited on
page 5.)

Jørgensen, S. E. and Bendoricchio, G. (2001), Fundamentals of ecological modelling , Kidlington (Elsevier),
3rd edn. [Google Books]. (Cited on page 11.)

Living Reviews in Landscape Research
http://www.livingreviews.org/lrlr-2014-2

http://dx.doi.org/10.1016/j.ecolmodel.2006.02.044
http://dx.doi.org/10.1016/j.ecolmodel.2005.10.026
http://dx.doi.org/10.1109/TGRS.2008.919379
http://dx.doi.org/10.1007/s10980-009-9400-6
http://dx.doi.org/10.1371/journal.pone.0046064
http://dx.doi.org/10.1137/0515056
http://dx.doi.org/10.1016/j.enpol.2007.04.017
http://dx.doi.org/10.1016/j.gloenvcha.2008.06.005
http://dx.doi.org/10.1007/s100219900011
http://dx.doi.org/10.1007/s10980-013-9927-4
http://dx.doi.org/10.12942/lrlr-2009-2
http://lrlr.landscapeonline.de/lrlr-2009-2
http://dx.doi.org/10.1016/j.landurbplan.2013.01.004
http://dx.doi.org/10.1111/j.1365-2699.2010.02460.x
http://dx.doi.org/10.1007/s10980-009-9362-8
http://books.google.com/books?id=geNPWdVBbDYC
http://lrlr.landscapeonline.de/lrlr-2014-2


Dynamic Landscape Modelling: The Quest for a Unifying Theory 27

Keane, R. E., Cary, G. J., Flannigan, M. D., Parsons, R. A., Davies, I. D., King, K. J., Li, C., Bradstock,
R. A. and Gill, M. (2013), “Exploring the role of fire, succession, climate, and weather on landscape
dynamics using comparative modeling”, Ecological Modelling , 266: 172–186, [DOI]. (Cited on page 9.)

Kolb, M., Mas, J.-F. and Galicia, L. (2013), “Evaluating drivers of land-use change and transition potential
models in a complex landscape in Southern Mexico”, International Journal of Geographical Information
Science, 27(9): 1804–1827, [DOI]. (Cited on page 17.)

Kotliar, N. B. and Wiens, J. A. (1990), “Multiple scales of patchiness and patch structure: a hierarchical
framework for the study of heterogeneity”, Oikos, 59: 523–60, [DOI]. (Cited on pages 5, 9, 12, and 20.)

Krol, M. S. and Bronstert, A. (2007), “Regional integrated modelling of climate change impacts on natural
resources and resource usage in semi-arid Northeast Brazil”, Environmental Modelling & Software, 22(2):
259–268, [DOI]. (Cited on page 10.)

Kurz, W. A., Beukema, S. J., Klenner, W., Greenough, J. A., Robinson, D. C. E., Sharpe, A. D. and
Webb, T. M. (2000), “TELSA: the Tool for Exploratory Landscape Scenario Analyses”, Computers and
Electronics in Agriculture, 27(1–3): 227–242, [DOI]. (Cited on page 9.)

Lambin, E. F. (1997), “Modelling and monitoring land-cover change processes in tropical regions”, Progress
in Physical Geography , 21(3): 375–393, [DOI]. (Cited on pages 5, 6, 7, 10, and 16.)

Lambin, E. F., Rounsevell, M. D. A. and Geist, H. J. (2000), “Are agricultural land-use models able
to predict changes in land-use intensity?”, Agriculture, Ecosystems & Environment , 82(1–3): 321–331,
[DOI]. (Cited on page 7.)

Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., Dirzo,
R., Fischer, G., Folke, C., George, P. S., Homewood, K., Imbernon, J., Leemans, R., Li, X., Moran,
E. F., Mortimore, M., Ramakrishnan, P. S., Richards, J. F., Sk̊anes, H., Steffen, W., Stone, G. D.,
Svedin, U.and Veldkamp, T. A, Vogel, C. and Xu, J. (2001), “The causes of land-use and land-cover
change: moving beyond the myths”, Global Environmental Change, 11(4): 261–269, [DOI]. (Cited on
page 7.)
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